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LElTER TO THE EDITOR 

Classical diffusion in random fields with 
long-range correlations 

Zh S Gevorkian and Yu E Lozoviki 
Institute of Radiophysics and Electronics, 378410 Ashtarak-2, Armenia, USSR 

Received 13 March 1987 

Abstract. The effect of long-range random static fields on classical diffusion is investigated. 
It is shown that the long-range component of random fields leads to the appearance of a 
new (compared to the white noise case) fixed point in the renormalisation group ( R G )  

equations. The critical exponents and oscillating corrections corresponding to the new 
fixed point are calculated. 

In a recent series of papers [ 1-61 the effect of random static fields on classical diffusion 
was investigated. The dimension d = 2 was shown to be the upper critical dimension 
for this problem. This means that the d > 2 asymptote of the mean-square displacement 
for long times does not change and the behaviour remains diffusive (r2( r ) )  - t .  In the 
case d = 2 - E and for an isotropic &correlated random field, subdiffusive behaviour 
was obtained. A universal logarithmic correction to the diffusive behaviour was 
obtained for d = 2 and an isotropic &correlated random function. Superdiffusive 
behaviour at d = 2 ( (  r2(f))-  t(ln t’”) was obtained for transverse anisotropy, and 
subdiff usive behaviour obtained for longitudinal anisotropy. 

The aim of this letter is to investigate the long-range isotropic random field effect 
on classical diffusion. We show that taking account of the slowly-changing random 
field leads to the appearance of a new fixed point in the RG equations. At certain 
parameter values this new fixed point is stable and determines the critical behaviour 
of the system. In certain cases, the new point represents the stable fixed point of the 
focus type and therefore gives oscillating corrections to scaling laws. 

As usual, we consider the equation of motion for a particle in a viscous medium 
and in the random static force field 

i =  d t ) + f ( r )  (1) 

( T m  ( t ) r l p  (0)  = 2 m p  8(r - t ’ )  

( L ( r ) f p ( r ’ ) ) =  8 m p N r - r ’ l )  ( 2 )  

(II) = (f) = 0. 

aP 
- - DV2P + V ( f P )  = 0. 
a t  

where q( t )  and f( r )  are Gaussian random functions with correlation functions: 

The associated Fokker-Planck equation is 

(3) 
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It is convenient to deal with the Green function of (3)  determined by 

Through the Green function G one may obtain all the moments of r( t ) .  We represent 
G in the form of a functional integral 

G(r ,  t ,  r’, t ’ )  = -i D$Dcp$(r’, t’)cp(r, t )  exp I 
Here $(r ,  t )  and q( r ,  t )  are real functions. Notice that in this time-dependent rep- 
resentation the normalising denominator is absent. This means that all diagrams with 
closed loops are identically zero (see [3] and [ 7 ] ) .  After Gaussian averaging over f ( r )  
in ( 5 )  we obtain 

G(r ,  t, r ’ ,  1 ’ )  = -i D+Dq+(r’% t’)cp(r, t )  exp(Y0+YJ I 
where 

To= i dw dq $( -U ,  -q)cp(w, q)(-io + Dq2) 

(6) 
I 

Tint= --: d t  dt’drdr’cp(r, t ) V $ ( r ,  t)B(lr-r’l)q(r’ ,  t ‘ ) V $ ( r ’ ,  t ’ ) .  5 
For a &correlated random function B( r - r ’ )  = A 6 (  r - r’) we suppose that B( r )  at large 
distances falls off as l / r b .  Then the Fourier transform of B ( r )  at small k has the form 

B ( k ) - A +  Wkb-d.  ( 7 )  

Notice that such a long-range fluctuating field exists for example in the two-dimensional 
degenerate systems where the field f (  r )  originates from the two-component order 
parameter. It is known (see e.g. [ 8 ] )  that in these systems in the low-temperature phase 
the correlation function at large distances falls off as a power order. One may observe 
from (7) that the interaction in the Lagrangian is determined by two constants A and 
W, but it is clear that when b > d the parameter W will be irrelevant and all the results 
for the asymptotic behaviour of ( r 2 ( t ) )  will be the same as in the case of white noise 
( W = 0). We will show below that in the case b < 2 d  - 2 there are essential differences 
compared with the case of white noise. We use the RG technique in order to find the 
asymptotic behaviour of ( r 2 (  t ) )  and obtain the RG equations demanding, as usual, that 
at renormalisation the coefficient q’ in the Lagrangian does not change: 

W(A+ W )  
- 6 W -  

d W  -- W 2  - A’ 
- E A + -  

dA 
d l  4i7 d l  2rr 
_-  

d o  W ( E - ~ )  ( A +  W)’ 
z = 2 +  + _- - zw 

d l  4rr 87r2 

Here 6 = 2 - b, E = 2 - d and also 6 = O ( E )  and we limit ourselves to the second order 
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of A, W, 1 = In s (s is the scale). The system of equations has three fixed points 

(i)  A * = O  w*=o 
( i i )  A* = ~ T E  w*=o (9) 

- 2T8E W* = 778 
8 - E  8 - &  

(iii) A*=-  

The first point is the Gaussian fixed point, the second point is related to the short-range 
part of the random field, and the third point is related to the long-range part of the 
random field (compare with [9]). Now we linearise the system in the vicinity of the 
fixed points in order to determine stability regions (in the E ,  S plane) of the fixed 
points. We obtain from (8) assuming A = A* + A , ,  W = W*+ W ,  

_- dU- AU 
dl  

where A is a 2 x 2  matrix and U is a vector: 

- w* \ 

A fixed point is stable when all the eigenvalues of the corresponding matrix A are 
negative. We find that the E, 6 plane is divided into the following stability regions (see 
figure 1). In regions 1 and 2 ,  the Gaussian fixed point and short-range fixed point, 
respectively, are stable. In regions 3, 4 and 5 the long-range fixed point is stable. In 
region 4 the eigenvalues of A become complex and therefore oscillating corrections 
to the scaling laws occur. 

It is easy to show that at t + CO 

( r ’ ( t ) )  - t”‘.  

Here z is determined by (8), where in each stability region we must insert 
corresponding fixed point from (9) instead of A and W. Substituting (8) into ( 1 2  
obtain the following asymptotics for the mean-square displacement: 

1 2 )  

the 
we 

Figure 1. The regions of stability of fixed points. 
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1st region 

2nd region z = 2 + 2 E 2 , ( r 2 ( t ) ) -  t l - - F 2  

3rd-5th regions 

z = 2, ( r 2 (  t ) )  - t 

z = 2 + a  ti2 + f 6e, ( r2) - t ‘ - S 2 ’ 8 - s F ’ 4 ,  

Notice some peculiarities of (13). It is interesting that when 6 increases (or b 
decreases) the exponent of t decreases (when E 2 0). The second peculiarity is the 
difference from the diffusive behaviour in the case E < 0 (for example at d = 3 ) .  

As we have noted above, in region 4 the eigenvalues of matrix A become complex. 
Therefore in this case the corresponding fixed point is a focus-type stable point in the 
A, W phase plane. In this case oscillating corrections to the scaling laws for ( r ’ )  
appear, in analogy with the problems considered in [9] and [lo]. Although such a 
correction appears in the whole of region 4, we consider for simplicity the case 
E = O( d = 2) and S > 0. In this case from (8) we have: 

In w / w o  = z( 1’) dl’  Ib 
where 

6’ A , ( I ) S  SW,(l)  
z ( l )  = 2 + - + - + -  

4 2 7  4T 

Here A ,  and W, are deviations (we limit ourselves to linear approximation on A ,  and 
W,) from the fixed point A* = ~ 6 ,  W* = ~6 (see (9) at E = 0), and satisfy the linear 
system of differential equations ( lo) ,  where A is determined by (1 1) at E = 0. Solving 
these equations for A ,  and W, we obtain 

Al ( f )  =e-S”2(A,o cos :SI+ W,, sin i61) 

W,(l)=e-”’/2( W,,cos~SI-A,,sin +a/). 
Here A l o  and W,, are arbitrary constants. The mean-square displacement ( r ’ )  tends 
to e2‘o when t + 00, where lo is the scale at which w (  lo) - 1 if we begin renormalisation 
from w,=  l l t  at 1 = O .  Substituting (15) into (14) and solving it, we obtain 

where C ,  and C2 are arbitrary non-universal constants. 

has the form: 
We now assume that (f) =fo # 0. Then the Green function in the case A = W = 0 

In this case the diffusion coefficient is determined as 

where 

If A = W = 0 from (17) we obtain 

q L ( t )  = 
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We analyse the behaviour of D, , ( t )  at r + c o  and f o + O .  Notice that all the results 
above are correct at t << f;*. In the crossover region t - t ,  - f;* the behaviour of Dpv( t )  
is changed. In  certain cases (see below and also [ 5 ] )  corrections to exponent 2 in the 
crossover region appear. Thef, as w plays the role of a cut-off factor in the logarithmic 
divergent integrals. 

The renormalisation of fo is determined by the equation 

On the large scales I (small times) the perturbation theory is applicable, and we 

(21) 

obtain 

( X , , [  t (  l o ) ] )  - 2S, ,r (  lo) - e-”O(X,, ( t ) )  - e-”o2 Dpu( t ) t .  

It follows from~ (20) and (21) that 

D - e’’~~ exp (- lo’ z (  1 ’ )  dl‘) . 

Substituting (8) into (22) we find 

W*( E - 8 )  + ( A * +  W*)2 
8 ~r’ 

In the case t<< t ,  the divergent integrals are cut off by the frequency and, therefore, 
the scale lo is determined from the condition 

t ( lo) - l /w( lo) - texp  (-l0‘’.z(l)dl) - 1  

At t >> t ,  the integrals are cut off by the average force fo and therefore we find lo from 
the condition fa( / )  - 1. The crossover takes place when 

fi(1)- t - ’ ( l ) .  (24) 

t ,  - f;*-‘W’+A*)/47 

We find the crossover time from (20) and (24) 

In each stability region we must insert the corresponding fixed point (see above) instead 
of A* and W*. For example, in regions 3-5 we have t , -  fi2-”*. Using (22) we obtain 
the diffusion coefficient when f >> t,  and fo+ 0. In  regions 3-5 it has the form 

(25) 

In regions 1 and 2 D takes the values D-  1, D -  f;” respectively [2, 51. 
The oscillating correction to the scaling law (25) originates in region 4 because the 

long-range fixed point is of focus type. Consider the case d = 2( E = O), for simplicity. 
In  this case substituting (15)  into (22) and using Io  = -Info in the region t >> t,  we have 

~ , j 0 f i ~ / 2 + 6 ‘ / 4  

Here C,  and C, are non-universal arbitrary constants. 
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